
DEALING WITH ALIASING USINGDEALING WITH ALIASING USING
CONTRACTSCONTRACTS

BEATING FORTRAN'S PERFORMANCEBEATING FORTRAN'S PERFORMANCE

, PhD Student, Eötvös Loránd University Gábor Horváth
xazax.hun@gmail.com

1

https://xazax-hun.github.io/projectspage/
mailto:xazax.hun@gmail.com

ALIASINGALIASING
int f(int &a, float &b) {
 a = 2;
 b = 3;
 return a;
}

define i32 f(i32*, float*) {
 store i32 2, i32* %a
 store float 3, float* %b
 ret i32 2
}

2

ALIASINGALIASING
int f(int &a, float &b) {
 a = 2;
 b = 3;
 return a;
}

define i32 f(i32*, float*) {
 store i32 2, i32* %a
 store float 3, float* %b
 ret i32 2
}

int f(int &a, int &b) {
 a = 2;
 b = 3;
 return a;
}

define i32 f(i32*, i32*) {
 store i32 2, i32* %a
 store i32 3, i32* %b
 %tmp = load i32, i32* %a
 ret i32 %tmp
}

2

ALIASINGALIASING

Some parameters might alias!
Type based alias analysis

int f(int &a, float &b) {
 a = 2;
 b = 3;
 return a;
}

define i32 f(i32*, float*) {
 store i32 2, i32* %a
 store float 3, float* %b
 ret i32 2
}

int f(int &a, int &b) {
 a = 2;
 b = 3;
 return a;
}

define i32 f(i32*, i32*) {
 store i32 2, i32* %a
 store i32 3, i32* %b
 %tmp = load i32, i32* %a
 ret i32 %tmp
}

2

WHY DOES ALIASING MATTER?WHY DOES ALIASING MATTER?
LATENCY NUMBERSLATENCY NUMBERS

L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns 14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns 20x L2 cache, 200x L1 cache

3

WHY DOES ALIASING MATTER?WHY DOES ALIASING MATTER?
LATENCY NUMBERSLATENCY NUMBERS

OPTIMIZATIONSOPTIMIZATIONS

L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns 14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns 20x L2 cache, 200x L1 cache

3

WHY DOES ALIASING MATTER?WHY DOES ALIASING MATTER?
LORE: LOop Repository for the Evaluation of compilers

Numbers from P1296R0
Loops Sped

up
Mean
Speedup

Slowed Mean
slowdown

GCC 1939 734
(38%)

2.39x 155
(8%)

0.766

ICC 1861 843
(45%)

2.59x 94 (5%) 0.61

In some cases __restrict__ provides ~40X pref
4

FORTRANFORTRAN
Procedure arguments and variables may not
alias
Inception when CPU time was expensive
To convince people not to write in assembly...
...you need to generate blazing fast code

5

FORTRANFORTRAN
Procedure arguments and variables may not
alias
Inception when CPU time was expensive
To convince people not to write in assembly...
...you need to generate blazing fast code

C++C++
No standard way (other than types) to give aliasing

related hints.
5

NOT VECTORIZEDNOT VECTORIZED
void f(int *a, int *b, const int& num) {
 for(int i = 0; i < num; ++i) {
 a[i] = b[i] * b[i] + 1;
 }
}

6

NOT VECTORIZEDNOT VECTORIZED

VECTORIZEDVECTORIZED

void f(int *a, int *b, const int& num) {
 for(int i = 0; i < num; ++i) {
 a[i] = b[i] * b[i] + 1;
 }
}

void f(int *a, int *b, int num) {
 for(int i = 0; i < num; ++i) {
 a[i] = b[i] * b[i] + 1;
 }
}

6

WHO WRITES CODE LIKE THAT?WHO WRITES CODE LIKE THAT?

7

WHO WRITES CODE LIKE THAT?WHO WRITES CODE LIKE THAT?
template<typename T, ...>
void foo(..., const T&) { ... }

7

WHO WRITES CODE LIKE THAT?WHO WRITES CODE LIKE THAT?

Rings some bells?

template<typename T, ...>
void foo(..., const T&) { ... }

7

JASON'S EXAMPLEJASON'S EXAMPLE
void extend(std::uint8_t *src,
 std::uint32_t *dst) {
 for(int i = 0; i < 16; ++i) {
 dst[i] = src[i];
 }
}

8

JASON'S EXAMPLEJASON'S EXAMPLE

Loop versioned, large unrolled code twice

void extend(std::uint8_t *src,
 std::uint32_t *dst) {
 for(int i = 0; i < 16; ++i) {
 dst[i] = src[i];
 }
}

8

JASON'S EXAMPLEJASON'S EXAMPLE
enum struct Data : std::uint8_t {};

void extend(Data *src,
 std::uint32_t *dst) {
 for(int i = 0; i < 16; ++i) {
 dst[i] = (std::uint8_t)src[i];
 }
}

9

JASON'S EXAMPLEJASON'S EXAMPLE

Only the vectorized version

enum struct Data : std::uint8_t {};

void extend(Data *src,
 std::uint32_t *dst) {
 for(int i = 0; i < 16; ++i) {
 dst[i] = (std::uint8_t)src[i];
 }
}

9

IS IT ALWAYS POSSIBLE TOIS IT ALWAYS POSSIBLE TO
UTILIZE THE TYPE BASEDUTILIZE THE TYPE BASED

ALIASING RULES?ALIASING RULES?

10

NOT VECTORIZEDNOT VECTORIZED
void g(int *result, int **matrix, int height, int width) {
 for(int i = 0; i < height; ++i)
 for(int j = 0; j < width; ++j)
 result[i] += matrix[i][j];
}

11

NOT VECTORIZEDNOT VECTORIZED

VECTORIZEDVECTORIZED

void g(int *result, int **matrix, int height, int width) {
 for(int i = 0; i < height; ++i)
 for(int j = 0; j < width; ++j)
 result[i] += matrix[i][j];
}

void g(int * restrict result,
 int * restrict * matrix,
 int height, int width) {
 for(int i = 0; i < height; ++i)
 for(int j = 0; j < width; ++j)
 result[i] += matrix[i][j];
}

11

restrictrestrict
During each execution of a block in which a restricted
pointer P is declared, if some object that is accessible
through P (directly or indirectly) is modified, by any
means, then all accesses to that object (both reads
and writes) in that block must occur through P
(directly or indirectly), otherwise the behavior is
undefined.

12

LET'S JUST ADD RESTRICT TO C++?LET'S JUST ADD RESTRICT TO C++?
How to annotate the code below?

void g(vector<int> &result, vector<vector<int>> &matrix) {
 for(int i = 0; i < matrix.size(); ++i)
 for(int j = 0; j < matrix[0].size(); ++j)
 result[i] += matrix[i][j];
}

13

LET'S JUST ADD RESTRICT TO C++?LET'S JUST ADD RESTRICT TO C++?
How to annotate the code below?

What would

or

mean?

void g(vector<int> &result, vector<vector<int>> &matrix) {
 for(int i = 0; i < matrix.size(); ++i)
 for(int j = 0; j < matrix[0].size(); ++j)
 result[i] += matrix[i][j];
}

vector<int restrict>

vector<int> restrict

13

ADDING ADDING restrictrestrict TO C++ TO C++
Many failed attempts, lots of unanswered questions
Should restrict change the overload sets?
Should restrict participate in name mangling?
restrict was never designed to work with the
class abstraction
How should restrict carried through templates?
Members, lambda captures, unions, ...
C2X, n2260, clarifying restrict

14

WHAT DO YOU THINK ABOUT THIS CODE?WHAT DO YOU THINK ABOUT THIS CODE?
void f(int * restrict x, int * restrict y);
void g() {
 int x;
 f(&x, &x);
}

15

WHAT DO YOU THINK ABOUT THIS CODE?WHAT DO YOU THINK ABOUT THIS CODE?

Adding restrict to f makes it harder to use. It is now
the caller's responsibility to ensure no aliasing is

happening.

void f(int * restrict x, int * restrict y);
void g() {
 int x;
 f(&x, &x);
}

15

WHAT DO YOU THINK ABOUT THIS CODE?WHAT DO YOU THINK ABOUT THIS CODE?

Adding restrict to f makes it harder to use. It is now
the caller's responsibility to ensure no aliasing is

happening.
Restrict is a precondition!

void f(int * restrict x, int * restrict y);
void g() {
 int x;
 f(&x, &x);
}

15

WHAT DO YOU THINK ABOUT THIS CODE?WHAT DO YOU THINK ABOUT THIS CODE?

Adding restrict to f makes it harder to use. It is now
the caller's responsibility to ensure no aliasing is

happening.
Restrict is a precondition!

Only if we had a way to describe preconditions in C++...

void f(int * restrict x, int * restrict y);
void g() {
 int x;
 f(&x, &x);
}

15

WHAT DO YOU THINK ABOUT THIS CODE?WHAT DO YOU THINK ABOUT THIS CODE?

Adding restrict to f makes it harder to use. It is now
the caller's responsibility to ensure no aliasing is

happening.
Restrict is a precondition!

Only if we had a way to describe preconditions in C++...
Voted into C++20 in June (Rapperswil meeting)

void f(int * restrict x, int * restrict y);
void g() {
 int x;
 f(&x, &x);
}

15

CONTRACTS TO THE RESCUE?CONTRACTS TO THE RESCUE?
EXPLORING THE DESIGN SPACEEXPLORING THE DESIGN SPACE

16

SIMPLE PRECONDITIONSSIMPLE PRECONDITIONS

f(x, x); is undefined
The precondition is documented
We have two mitigations:

Runtime checks (with axiom
removed)
Static analysis

int f(int &a, int &b) [[expects axiom: &a != &b]] {
 a = 2;
 b = 3;
 return a;
}

17

SIMPLE PRECONDITIONS (LAMBDAS)SIMPLE PRECONDITIONS (LAMBDAS)
auto f = [](int &a, int &b) [[expects axiom: &a != &b]] {
 a = 2;
 b = 3;
 return a;
}

18

ARRAYSARRAYS
int *merge(int *a, int *b, int num) [[expects: ???]];

19

ARRAYSARRAYS

Extend the language?

int *merge(int *a, int *b, int num) [[expects: ???]];

19

ARRAYSARRAYS

Extend the language?

int *merge(int *a, int *b, int num) [[expects: ???]];

int *merge(int *a, int *b, int num)
 [[expects: __disjoint(a, b, num)]];

19

ARRAYSARRAYS

Extend the language?

__disjoint(a, b, c, ..., num)?

int *merge(int *a, int *b, int num) [[expects: ???]];

int *merge(int *a, int *b, int num)
 [[expects: __disjoint(a, b, num)]];

19

ARRAYSARRAYS

Extend the language?

__disjoint(a, b, c, ..., num)?

int *merge(int *a, int *b, int num) [[expects: ???]];

int *merge(int *a, int *b, int num)
 [[expects: __disjoint(a, b, num)]];

int *merge(int *a, int *b, int num)
 [[expects: __distinct(a) && __distinct(b)]];

19

POSSIBLE IMPLEMENTATION FORPOSSIBLE IMPLEMENTATION FOR
__disjoint__disjoint??

// From: P1296R0
template<typename T, typename U>
bool __disjoint(const T *pt, const U *pu, size_t n) {
 intptr_t bt = (intptr_t)pt,
 et = (intptr_t)(pt + n);
 intptr_t bu = (intptr_t)pu,
 eu = (intptr_t)(pu + n);

 return (et <= bu) || (eu <= bt);
}

20

POSSIBLE IMPLEMENTATION FORPOSSIBLE IMPLEMENTATION FOR
__disjoint__disjoint??

Are we sure this is well defined? Compilers might want
to have intrinsics instead.

// From: P1296R0
template<typename T, typename U>
bool __disjoint(const T *pt, const U *pu, size_t n) {
 intptr_t bt = (intptr_t)pt,
 et = (intptr_t)(pt + n);
 intptr_t bu = (intptr_t)pu,
 eu = (intptr_t)(pu + n);

 return (et <= bu) || (eu <= bt);
}

20

USER DEFINED TYPESUSER DEFINED TYPES
int f(S a, S b)
 [[expects: __disjoint(a.member, b.member)]];

21

USER DEFINED TYPESUSER DEFINED TYPES
int f(S a, S b)
 [[expects: __disjoint(a.member, b.member)]];

int f(S a, S b)
 [[expects: __disjoint(a.method(), b.method())]];

21

USER DEFINED TYPESUSER DEFINED TYPES

What if we need arguments? Use dummy symbols?
Existentially or universally quantified?

int f(S a, S b)
 [[expects: __disjoint(a.member, b.member)]];

int f(S a, S b)
 [[expects: __disjoint(a.method(), b.method())]];

int f(S a, S b)
 [[expects: __disjoint(a.method(???), b.method(???))]];

21

VIEWS TO THE RESCUE?VIEWS TO THE RESCUE?

22

NON-ALIASING VIEW EXAMPLENON-ALIASING VIEW EXAMPLE
template <typename ... >
class unique_span {
 unique_span(...) [[expects: ???]];
 reference operator[](index_type idx) const
 [[ensures x: __distinct(x, this, idx)]];
};

f(unique_span(vec), unique_span(vec2));

23

BACK TO THE MATRIX EXAMPLEBACK TO THE MATRIX EXAMPLE
void g(unique_span<int> result,
 vector<unique_span<int>> &matrix) {
 for(int i = 0; i < matrix.size(); ++i)
 for(int j = 0; j < matrix[0].size(); ++j)
 result[i] += matrix[i][j];
}

24

BACK TO THE MATRIX EXAMPLEBACK TO THE MATRIX EXAMPLE

Note that in real code we may want a
multidimensional view or one dimensional matrix

representation to avoid copying at the call site.

void g(unique_span<int> result,
 vector<unique_span<int>> &matrix) {
 for(int i = 0; i < matrix.size(); ++i)
 for(int j = 0; j < matrix[0].size(); ++j)
 result[i] += matrix[i][j];
}

24

A NEW TYPE? ISN'T THAT HEAVYA NEW TYPE? ISN'T THAT HEAVY
WEIGHT?WEIGHT?

25

ARE THESE FUNCTIONS THE SAME?ARE THESE FUNCTIONS THE SAME?
double my_sqrt(double x) {
 return sqrt(x);
}

double my_sqrt(double x) {
 if (x < 0) return 0;
 return sqrt(x);
}

double my_sqrt(double x) {
 if (x < 0) throw ...;
 return sqrt(x);
}

26

ARE THESE FUNCTIONS THE SAME?ARE THESE FUNCTIONS THE SAME?
double my_sqrt(double x);

double my_sqrt(double x) [[expects: x >= 0]];

double my_sqrt(double x) [[expects: x >= 0]]
 [[ensures ret: ret >= 0]];

27

ARE THESE TYPES THE SAME?ARE THESE TYPES THE SAME?
unique_span<int>

span<int>

28

Exercise: how different are these types?

29

Exercise: how different are these types?
Hint: How many methods need to be annotated?

29

Exercise: how different are these types?
Hint: How many methods need to be annotated?

Hint2: How many other things need to be annotated?
Iterators?

29

Exercise: how different are these types?
Hint: How many methods need to be annotated?

Hint2: How many other things need to be annotated?
Iterators?

Is it feasible to do all that inline?

29

It might be a lot of work to create such types, but...

These can be vocabulary types
We should use such classes sparingly, as they
impose burden on the caller
Those methods/functions are now screaming that
they are special and error prone
We can do overloads!

30

WE ALREADY HAVE TO REASON ABOUTWE ALREADY HAVE TO REASON ABOUT
ALIASINGALIASING

std::copy*
memcpy vs memmove
We would get mitigations for existing
UB!

31

RELATED WORKRELATED WORK
p0856r0: Restrict as a library feature
n3635, n4150: Annotating alias sets
P1296R0: Very similar design, cooperating with the
authors
The malloc attribute of GCC, noalias attribute of
Clang
All major compilers has restrict like features as
extensions
IBM XL's #pragma disjoint

32

P1296R0P1296R0
std::disjoint only
Discussed at San Diego meeting
In ealry stages, no way to get into
C++20

33

ALIAS SETSALIAS SETS
void * [[alias_set()]] malloc(size_t);
int * [[alias_set(Foo)]] p1 = ...;
int * [[alias_set(Bar), alias_set(Baz)]] p2 = ...;
int * p3 = ...;

34

THANKS FOR YOUR ATTENTION!THANKS FOR YOUR ATTENTION!

35

